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In this work, ionic conductivity data of zwitterionic polymers are compared with predictions of the random free-
energy barrier model for a.c. conduction in disordered solids. It is shown that conductivity follows a long range
delocalized diffusion of charge carriers within an equally probable distribution of free-energy barriers.
Accordingly, it follows time–temperature superposition, expressed as a master curve for the normalized
conductivity as a function of the non-dimensional frequency. The dielectric behaviour is dominated by ionic
conductivity, and results suggest a process of quasi-ideal conduction of the ion carriers, consistent with a large
value of the dielectric relaxation time characteristic of delocalized conduction processes. It is further remarked
that alternative interpretations to the conduction behaviour in these polymers can also be given by other theories
and models.q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

Ionic conductivity mechanisms in polymers bear similarities
to those of ceramics and disordered solids. In general, at low
frequencies a constant ionic conductivity (d.c.) is observed,
while at higher frequencies the conductivity becomes
frequency dependent (a.c.), and it varies approximately as
a power of the frequency. A strong temperature dependence
(i.e. Arrhenius) d.c. conductivity is observed, while the a.c.
conductivity depends weakly on temperature.

A wealth of models have been proposed to account for the
observed frequency dependent a.c. conduction. Based on the
fact that over a specific frequency interval conductivity is an
increasing function of frequency, some models have
considered the process of thermally activated hopping
across an energy barrier to explain such behaviour. Other
models suggest that a.c. and d.c. conduction are due to the
same mechanism1.

The frequency-dependent ionic conductivity strongly
suggests that any model for a.c. conduction should be
built on the assumption of a distribution of energy barriers.
The simplest possible assumption is that all free-energy
barriers are equally likely. Indeed, Dyre2 has suggested a
model which assumes that conduction takes place by
hopping, where the hopping charge carriers are subjected
to spatially randomly varying energy barriers. To calculate
the conductivity in random media the model considers the
simplest possible nontrivial mean-field approximation, i.e.,
the continuous time random walk approximation3. This
approximation may be represented by an equivalent
electrical circuit in which the capacitances are equal while
the resistances may vary. In this case, the impedanceZ(q) is

given by

Z(q) ¼ 〈1=(R¹ 1 þ iqC)〉, (1)

whereC is the capacitance and the average is taken over the
distribution of resistancesR. Corresponding to the randomly
varying free-energy barriers, the resistance probability
distribution varies asR¹1, and thus the characteristic time
t ¼ RC is distributed according tot¹1. Equation (1)
becomes:

Z(q) ¼
K
C

∫t

0

1
t ¹ 1 þ iq

dt
t

¼
K
C

∫t

0

1
1þ iqt

dt (2)

where t is the relaxation time.K is a constant which is
determined self-consistently. Solution of equation (2)
gives the following expression for the conductivity:

j(q) ¼ j0
iqt

ln(1þ iqt)
: (3)

Note that the integral in equation (2) assumes an equal dis-
tribution of relaxation timest, which is consistent with the
hypothesis of equally likely free-energy barriers.

The random free-energy barrier model predicts an
universal shape of the conductivity curve, when the reduced
conductivity is plotted with dimensionless frequency in a
log–log graph. The model implies a high-frequency
behaviour which is very close to a power law, with
exponents ranging between 0.7 and 1.0, as observed
experimentally. Results of a.c. conductivity allow for a
detailed discussion of possible mechanisms of charge
transport.

In this work, ionic conductivity data of a class of ionic
polymers, i.e., zwitterionic moieties, are compared with
predictions of the random free-energy barrier model for a.c.
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conduction in disordered solids. Agreement with predictions
from equation (3) is highlighted. In addition, it is shown that
these polymers present relaxation mechanisms character-
istic of a delocalized conduction process, or quasi-ideal
conduction. Conductivity follows a long range delocalized
diffusion of charge carriers within an equally probable
distribution of free-energy barriers.

EXPERIMENTAL PART

The polymer synthesis was performed through a quaterniza-
tion reaction with butane–sultone on the precursor
polymer, according to the technique described elsewhere4.
Copolymers with a specific ionic content are obtained, and
the ionic groups are randomly distributed along the polymer
chain. The resulting molecular structure is the following:

Molecular weights of the precursor polymer were deter-
mined by light scattering in a Wyatt Down-F apparatus.
Quantitative analysis of the ionic groups was made by
elemental analysis. Average molecular weights of the
precursor polymer (1.23 105) and of the quaternized
copolymer (2.13 105), with a 80.5% of ionic groups, were
determined. Subsequent characterization of the resulting
copolymer was obtained byFT-i.r. (Perkin Elmer 1600),
d.s.c. and t.g.a. (TA Instruments, DSC 9105 and TGA 951).

FT-i.r. identified the bands corresponding to the quater-
nized nitrogen (1790 cm¹1) and those of the sulfonate group
(1384 and 1180 cm¹1). The glass transition temperature of
the polymer is 141.58C. Due to the high hygroscopicity of
the samples, it was necessary to undertake a thermal
treatment before measurements. A weight loss of 8.3% at

1048C was found due to water evaporation. Decomposition
of the lateral groups and main chain take place at 270 and
3668C, respectively.

Dielectric spectroscopy measurements required disk-
shaped samples with 25.4 mm. diameter. These were
shaped from powder samples by pressing them using a
hydraulic press (Carver-C) under vacuum and a dryer. Two
gold-folded electrodes were used with a dielectric analyser
(DEA-2970, TA Instruments) equipped with a Wegner
bridge coupled to a TA-2100 console. Measurements were
taken from 1708C up to 2408C under inert atmosphere
provided by a nitrogen flow of 500 cc/min. The procedure to
perform the tests included an initial step increment of 2–38C
in temperature and 5 min equilibration time. A frequency
sweep of 21 frequencies (between 0.1 Hz and 0.3 MHz) was
carried out at constant temperature during 3 min sample
time. Thereafter, a further step increment in temperature is
made and the procedure above is repeated up to the
maximum temperature (2408C). Finally, the sample is
removed from the electrodes using trifluoroethanol and
acetone.

RESULTS

Since the conductivity measurements require that the
powder samples be compacted under pressure, conductivity
was measured on samples conformed under several
compacting pressures. Results indicate that the conductivity
is a function of the compacting pressure, phenomena which
has been given particular attention recently5. Analysis of
data was carried out on samples which presented the
maximum conductivity, which corresponds to a compacting
pressure of 6 ton/cm2 ( < 6 3 108Pa).

Data analysis and presentation may be made in several
ways: using the dielectric constant

«(q) ¼ «9(q) ¹ «0(q)i, (4)

or the conductivity

j(q) ¼ j9(q) þ j0(q)i: (5)

These two quantities are related by

«0«(q) ¼ [j(q) ¹ j(0)]=iq, (6)

where«0 is the vacuum permittivity. Alternatively, in ionic
conduction is sometimes preferred to present data in terms

Mechanisms of ionic conductivity for zwitterionic polymers: J. H. Pérez et al.
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Figure 1 Ionic conductivity against inverse temperature for various frequencies



of the dielectric modulusM(q) ¼ M9(q) þ M0(q)i, defined
by

M(q) ¼ iq=j(q): (7)

The use of the dielectric modulus has the advantage
of neglecting contributions toM0(q) from electrode
capacitances. Similarly, the impedanceZ(q) ¼ Z9(q) ¹
iZ0(q) is usually plotted in a complex impedance
diagramZ9 versus Z0 to obtain information about electrode
contributions.

Data of conductivity against temperature are shown
in Figure 1 for several frequencies. As observed, an
anomalous behaviour is seen at temperatures lower than a
critical temperature (approximately 2138C, 486 K), where
conductivity actually decreases with increasing temper-
ature. Beyond this critical point, conductivity rises with
temperature following a normal behaviour. The anomalous
data may be ascribed to a morphological change occurring
at lower temperatures than a critical temperature (Ts).
Indeed, in the systems treated by Cardosoet al.6, a sudden
change in the slope of the conductivityversustemperature is
observed at 488 K for polymer structures similar to the
system treated here. Formation of aggregates and clusters
inhibits the movements of dipoles responsible for the
relaxation processes. Calorimetric measurements show
the formation of a cluster phase as the sample is heated,
and the presence of this new phase inhibits conductivity as
the temperature is risen. It is well known7,8 that cluster
crystallinity inhibits conductivity by acting as potential
barriers to conduction. For temperatures higher thanTs, the
cluster phase is melted and conductivity starts to increase
with temperature.

It is important to measure the a.c. conductivity in the
appropriate temperature range to separate electrode polar-
ization or blocking effects from the bulk conductivity.
Indeed, in ion-containing polymers, d.c. conductivities are
limited by electrode polarization or blocking effects.
Figure 2 shows ionic conductivity data in the 213–2358C
temperature range. At the lowest frequencies, conductivity
is not constant and this is caused by electrode polarization

effects. D.c. conductivities are characterized by a frequency
plateau and the transition into the frequency-dependent a.c.
conductivity shifts to higher frequencies as the temperature
is increased.

In ion-containing polymers, the dielectric behaviour at
high temperatures is dominated by contributions of ionic
conductivity, as in the case of ionenes9. It is usually
encountered that dielectric data are characterized by the
superposition of two processes: a conductivity contribution
that produces an increase of both the real part«9 and the
imaginary part «0 of the dielectric function «* with
decreasing frequency, and a relaxation process exhibiting
a maximum in«0 that shifts to higher frequencies with
increasing temperature. In the zwitterionic polymers treated
here, we do not observe the peak in«0 within the frequency
range available but, nevertheless, the increase in«0 as
frequency decreases due to the conductivity contribution is
clearly manifested, as seen inFigure 3.

Empirical relationships are proposed for the conductivity
and relaxation contributions contained in the«0 data.
The conductivity contribution to«0 follows a power-law
and the relaxation contribution is analysed using the
Havriliak–Negami equation to account for the width and
asymmetry of the relaxation process10. In the results
presented here, it was found convenient to analyse the
conductivity data directly in the framework of more
fundamental models.

The complex dielectric function can be affected by
electrode polarization. This causes deviations on the low
frequency side of the Cole–Cole representation of the
complex impedance. Deviations may become more pro-
nounced with increasing temperature and hence increasing
mobility and number of charge carriers.Figure 4shows the
real (Z9) and the imaginary (Z0) parts of the complex
impedance (Z*) plotted with frequency. Data are taken at
several temperatures within 215–2388C range, which,
although it is a narrow one, does correspond to the region
where conductivity increases with temperature. Super-
position is obtained after horizontal shifting of data reduced
to an arbitrary temperatureT0 ¼ 2258C using theaT factor
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defined as:

aT ¼ (tZ)T=(tZ)T0
, (8)

were (tZ)T is the impedance relaxation time (inverse fre-
quency of the maximum ofZ0) at temperatureT referred
to the relaxation time at the reference temperatureTo. It is
clearly observed that the electrode contribution for values of
qaT are lower than 102 in the Z0 curve. In the Cole–Cole
representation (Figure 5), complex impedance arcs with
depressed centres and deviations towards the low frequency
side were found. This representation allows to ascribe the
high-frequency semicircles to a conductivity contribution of
the bulk sample, and the low-frequency arcs to an electrode
polarization resistance.

Finally, Figure 6shows the superposed curves for several
temperatures of the dielectric imaginary modulus (M0)
against non-dimensional frequency. As observed, the
modulus relaxation time, corresponding to the inverse

frequency of the maximum inM0, has a lower magnitude
than that of the impedance relaxation time (tM < 10¹6 s,
tZ < 10¹5 s) shown inFigure 4, although the maximum in
M0 cannot be determined accurately because it is not
possible to obtain data at higher frequencies in the apparatus
used.aT values were evaluated by horizontal shifting of the
curves reduced to 2258C as well. Arrhenius plots of
impedance relaxation time (tZ) and modulus relaxation
time (tM) represented byaT reduced to the same temperature
(2258C) are shown inFigure 7. Values do not differ
largely, but activation energies are 282.8 kJ/mol for the
impedance relaxation and 436 kJ/mol for the modulus
relaxation.

DISCUSSION

From complex impedance data it is possible to elucidate the
characteristics of the relaxation process. In fact, the Debye
relaxation may be represented using the following
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Figure 3 Imaginary part of the permittivityversusfrequency for various temperatures

Figure 4 Reduced impedance (real and imaginary) curvesversusnon-dimensional frequency. Reference temperature is 498 K



expression forZ*:

Z p ¼
R

1þ iqt=r
¹ i

R
((r ¹ 1)=r)iqt

, (9)

where r ¼ «S/«` («S, «` are the static and the optical
dielectric constants). Asr is increased, the deviations
from the semicircle are smaller. The relaxation process is
thus a Debye relaxation with large relaxation ratior, and in
this case semicircles are found in both the impedance and
dielectric planes. Similarly, a semicircular arc in the
impedance plane is obtained in the case of a non-localized
diffusion process of charge carriers11. This process is
represented by a parallel RC circuit for the simplest case,

which leads to:

Z p ¼
R

1þ iqtZ
: (10)

Therefore, if data follow a semicircle in the impedance
plane, the behaviour can be ascribed to a strong Debye
process or, alternatively, to a non-localized diffusion pro-
cess. However, data inFigure 5 do not strictly follow a
Debye process, even at low temperatures where the arcs
look symmetrical, because the semicircles centres are
located below theZ9 axis. In this case, the Cole–Cole
expression fits the experimental data at 2158C (see values
in Figure 5):

Z p ¼
R

1þ (iqtZ)b
: (11)

where b ¼ 0.70–0.77. Equation (11) indicates a super-
position of Debye-like relaxation processes with a range
of relaxation times symmetrically distributed about the
main relaxation timetZ. For larger temperatures, the
symmetry in the curves is lost and equation (11) does not
predict the data appropriately, as shown inFigure 5. A more
complicated empirical expression, i.e., the Havriliak–
Negami expression, which may account for the asymmetry
of the curves, would predict the experimental data better.

As mentioned, equation (10) may be expressed by a
perfect semicircle in the complex impedance plane. This is
the so called ‘ideal conduction’, which can be treated as an
extremely strong Debye relaxation witht« andtY (dielectric
and conductivity relaxation times) being infinitely large.
Further in this case the d.c. conductivity becomes:

j0 ¼
«`«0

tM
¼

«`«0

tZ
, (12)

(which means thattM ¼ tZ). Equation (12) has been used
empirically by a number of authors1,12–14. It was further
found that equation (12) holds whenb is close to 1 andr
is large11,12. In fact, the scaling suggested by equation (12)
has been proved to be very satisfactory in predicting the
conductivity for many oxide glasses15. In addition, both
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Figure 5 Cole–Cole plot of the impedance for several temperatures.
Predictions of equation (11) are also shown for various values of the
parameters

Figure 6 Imaginary part of the dielectric modulusversusnon-dimensional frequency. Reference temperature is 498 K



the d.c. conductivity and relaxation times (tZ and tM) are
expected to have the same activation energy for a thermally
activated process since they depend strongly on temper-
ature. However, activation energies (as observed in
Figure 7) and magnitudes of the modulus and impedance
relaxation times differ in this polymer.

The non-localized diffusion process generally dominates
at low frequencies16. The non-localized conductivity (d.c.
conductivity) represents a non-localized or long-range
diffusion process. This conduction is accompanied by the
rise in«9, «0 at low frequencies (seeFigure 3) in contrast to
a localized relaxation process, which has a much smallerD«
andt«. In fact, in a localized process, the maximum in«0 is
clearly observed within the frequency range of measure-
ments, in contrast to the non-localized«0 behaviour shown
in Figure 3.

The modulus and impedance spectra shown inFigures 4,
and 6can be represented by equivalent electrical circuits17.
The response from the bulk sample would include a single
capacitance, since a single polymeric phase with a
corresponding conductivity is present. A pure capacitance
Ce is added in series to represent the blocking electrodes.
Let us propose an electric circuit which represent the bulk
response of the sample, where a capacitanceCb is placed in

parallel with a series of varying resistances,R1, R2,…Rn, as
shown below:

The response of such a circuit contains a single peak in the
modulus spectrum, since this spectrum suppresses the low-
frequency peak corresponding to the high-capacitance
intergranular material. On the other hand, the impedance
spectrum is composed of the cumulative or spectral
contribution fromn resistances (which reflect the individual
resistances of the sample) with a global resistance
represented by a single peak shifted to the lower
frequencies. Now, let us further assume that the relaxation
timestZ implied in the circuit, i.e.,

tZ1
¼ R1C, tZ2

¼ R2C, …,tZn
¼ RnC,
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Figure 7 Shifting factoraT (ratio of relaxation times)versusinverse temperature for the modulus (aT)M and impedance (aT)Z

Figure 8 Reduced conductivityversusnon-dimensional frequency using (tZ). Predictions of equation (3) are shown as a continuous line



follow a box distribution of relaxation times. This means, in
terms of a probability distribution, that

tZ1
, tZ2

…tZn
,

are equally likely, which is consistent with a process of
delocalized diffusion within an equally probable distri-
bution of free-energy barriers. As already described, the
conductivity represented by the circuit above is given by
equation (3). Data at several temperatures are shown in
Figure 8with predictions from equation (3). Note the elec-
trode contributions for values lower than 10 units of the
non-dimensional frequency (using the impedance relaxation
time). Also notice the power law region at high frequencies,
with a slope that changes from 0.7 to 1.0, in agreement with
predictions of the random free-energy barrier model.

For the dielectric loss, substituting equation (3) into
equation (6), one finds:

«0(q) ¼ 2D«
arctan(qt)

[ln
������������������
1þ (qt)2

p
]2 þ [arctan(qt)]2

þ
1
qt

 !
(13)

where

D« ¼ j0t«=2«0 (14)

equation (13) implies a very broad loss peak with temper-
ature-independent shape. However, in the present data the
loss peak is absent at small frequencies and cannot be
extracted from the electrode contributions. This is consistent
with a large value oft« characteristic of a delocalized
conduction process described above. Consequently, quanti-
tative agreement between equation (13) and data ofFigure 3,
where the peak is not present, is not found.As suggested by
Dyre2, plotting the reduced conductivity data againstqt,
where t is given by equation (14) and considering the
Curie law:

D« ~
1
T

(15)

reduced data gives the same superposition as inFigure 8.
This scaling principle is consistent with the time–
temperature superposition principle (i.e., the existence of a
universal conductivity curve) which allows one to plot
different experiments onto a master curve, as shown in
Figure 8. Finally, it is worth pointing out that the agreement
of data with equation (3) illustrates that the mechanism of
long-range diffusion of charge carriers in this polymer is
consistent with a process of delocalized diffusion within
an equally probable distribution of free-energy barriers.
However, in this case, the ‘ideal conduction’ mechanism
is only approximately followed, since the modulus and
impedance relaxation times are not equal neither their
activation energies.

CONCLUSIONS

Conductivity behaviour of the zwitterionic polymers treated
here as a function of frequency and temperature follows
closely the predictions of the random free-energy barrier
model with equally probable distribution of energy barriers.
Along the available region where conductivity increases

with temperature, data may be expressed as a master curve
of the normalized conductivityversus dimensionless
frequency. On the other hand, the dielectric loss peak is
absent within the frequency range studied. The dielectric
behaviour is hence dominated by the ionic conductivity.

Impedance curves clearly show the electrode contribution
and the bulk response. At the lowest temperature these are
symmetric and follow a Cole–Cole behaviour. For higher
temperatures, theZ9,Z0 representation shows non-symmetric
semiarcs. Complex impedance data cannot simply be
ascribed to a strong Debye process nor to a strictly ‘ideal
conduction’ process, since deviations from semicircular arc
in the impedance plane exist, and there are differences
between activation energies and magnitudes of both the
modulus and impedance relaxation times. Results only
suggest an ‘approximate ideal conduction’ of the ion
carriers, which is consistent with a large value of the
dielectric relaxation time characteristic of delocalized
conduction processes.

We are aware of the fact that the conductivity data
presented can also be given an alternative theoretical
interpretation. Indeed models such as those of Funke18,
Elliott19, Dieterich20, MacDonald21 and other authors
mentioned in the review paper by Hunt22, are in many
ways suitable to be applied to the conduction data, and
suggest alternative explanations of the charge transport.
Since the underlying mechanism of ionic conduction is still
controversial, the choice of a single model with fundamental
ingredients is henceforth justified.
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